Mark scheme - How Far

	Questio n	Answer/Indicative content	Mark s	Guidance
	1	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 7.4 award 4 marks Initial moles of reactants 1 mark $n\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{\text {initial }}=\frac{9.6}{32}=0.3-(\mathrm{mol})$ AND $n\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{\text {initial }}=\frac{12}{60}=0.2(\mathrm{~mol})$ Equilibrium moles 2 marks $n\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ reacted $=0.2-0.03=0.17(\mathrm{~mol})$ AND $\begin{aligned} & n\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{\text {equil }}=0.3-0.17=0.13(\mathrm{~mol}) \checkmark \\ & n\left(\mathrm{CH}_{3} \mathrm{COOCH}_{3}\right)_{\text {equil }}=0.17(\mathrm{~mol}) \\ & \text { AND } \quad=0.17(\mathrm{~mol}) \checkmark \\ & n\left(\mathrm{H}_{2} \mathrm{O}\right)_{\text {equil }} \quad K_{\mathrm{c}} \text { calculation } 1 \text { marks } \\ & K_{\mathrm{c}}=\frac{0.17 / \mathrm{V} \times 0.17 / \mathrm{V}}{0.13 / \mathrm{V} \times 0.03 / \mathrm{V}}=7.4 \checkmark \end{aligned}$	(AO 1.2×1) (AO 2.8×3)	ALLOW minimum of 2SF throughout ALLOW ECF from initial moles ALLOW ECF from equilibrium moles Use of V not required but Kc expression must be correct ALLOW up to calculator answer of 7.41025641 Examiner's Comments This question asked the candidate to calculate K_{c}. Higher-attaining students tended to gain full marks. Some candidates made full use of tables (e.g. RICE: Reaction, Initial concentration, Change in concentration, Equilibrium concentration) which allowed for credit to be given through error carried forward. Some candidates did not use 0.03 as the change, and lower-attaining candidates did not use water in the K_{c} expression. Candidates should remember to provide written indications of what it is they are working out - presenting the calculations without any annotations can make it harder for error carried forward marks to be given if there is an error in their calculation.
		Total	4	
	2	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2.22×10^{4} award first 2 marks In $K_{p}=-\Delta G / R T=\frac{2.48 \times 10^{4}}{8.314 \times 298}=10.01 \checkmark$ $K_{p}=2.22 \times 10^{4}(3$ SF required $) \checkmark$ Units $=$ atm $^{-2} \checkmark$	3 (AO 3.1×2) (AO	ALLOW ECF for transcription errors in first sum ALLOW 10 up to calculator value of 10.00979992 ALLOW 22200 ALLOW 2.20×10^{4} OR 22000 (use of 10) ALLOW alternatives (k) Pa^{-2} OR $\mathrm{N}^{-2} \mathrm{~m}^{4}$ OR mmHg^{-2} OR PSI^{-2} OR bar^{-2}

							Common errors for 1 mark: $\begin{aligned} & 22400 \text { (use of } 8.31 \text {) } \\ & 4.50 \times 10^{-5} \text { (use of }-10.01 \text {) } \end{aligned}$ Examiner's Comments This was an unfamiliar expression linking ΔG and K_{p}. Many candidates correctly calculated this number. Some candidates calculated In K_{p} as 10.0 but then put a in front for the e calculation. The question required the answer to 3 significant figures. Higher-attaining candidates were able to work out the units as any pressure unit ${ }^{-2}$.
			Total				
3	a		T / K 500 600 700 800 K_{p} 5.86×10^{45} 1.83×10^{37} 1.46×10^{31} 1.14×10^{26} $\frac{1}{T}$ 2.00×10^{-3} 1.67×10^{-3} 1.43×10^{-3} 1.25×10^{-3} K^{-1} 105 86 72 60 $\ln K_{\mathrm{p}}$ 10 Calculator values 1/T/10-3 2.00 1.66 1.428571429 1.25 In K_{p} 105.3844788 85.79996441 71.75857432 59.99824068 Equilibrium (position) shifts to the left AND (forward) reaction is exothermic \checkmark				Mark by row ALLOW 2 SF or more for $1 / \mathrm{T}$ but ignore trailing zeroes ALLOW whole numbers (± 1) for $\operatorname{In} \mathrm{Kp}$ ALLOW 1 small slip in each row. e.g. 1.66 for $1.67 ; 71.7$ for 71.8 Check with calculator values below table BUT DO NOT ALLOW whole number errors, e.g. 85 for 86 Examiner's Comments Candidates were expected to complete values for $1 / T$ and $\ln K_{p}$ from supplied T and K_{p} values. Candidates were supplied with an example and this enabled most candidates to obtain both available marks.
	b						ALLOW 'favours reverse reaction' Implies shift to left ALLOW 'shifts in endothermic direction' BUT only if (forward) reaction stated as exothermic Examiner's Comments Most candidates were aware that a decrease in K_{p} with increasing temperature signals that the forward reaction is exothermic. The question also asked for the effect on the equilibrium position. A significant number of candidates omitted this part of the question. Candidates are advised to check back to all the requirements in a question.

5.1.2 How Far

5.1.2 How Far

		K_{c} calculated 1 mark $=\frac{0.03 \times 0.06^{2}}{0.02 \times 0.09^{2}}=0.667 \text { OR } 0.67$ NOTE: 0.02 must be used for n (succinic acid)		ALLOW ECF ALLOW 0.66, 0.666, etc. (2 SF and more) Treated as meaning 0.6 recurring ALLOW 2/3 IGNORE any units Examiner's Comments Overall, this part discriminated well with many candidates obtaining the correct answer of 0.67. Common errors included a one significant figure answer of 0.6 or 0.7 and 0.375 , by using 0.12 mol instead of 0.09 mol for the moles of ethanol. Many successful answers were well-presented and included a table of initial and final values. This gave a systematic way of deriving the equilibrium moles.
		Total	7	
6	a	$K_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.}$ Units $=\mathrm{dm}^{3} \mathrm{~mol}^{-1} \checkmark$	2	Must be square brackets IGNORE state symbols ALLOW $\mathrm{mol}^{-1} \mathrm{dm}^{3}$ ALLOW mol dm ${ }^{-3}$ as ECF from inverted K_{c} expression Examiner's Comments The expression and the units were almost universally known by the candidates.
	b	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer $=1.2$ (mol) award 4 marks Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived. $[\mathrm{NO}]=\frac{0.40}{4.0}=0.1(0)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$ AND $\left[\mathrm{O}_{2}\right]=\frac{0.80}{4.0}=0.2(0)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ $\left[\mathrm{NO}_{2}\right]^{2}=45 \times 0.102 \times 0.20 \mathrm{OR}=0.09(0) \checkmark$ $\left[\mathrm{NO}_{2}\right]=\sqrt{ }\left(45 \times 0.10^{2} \times 0.20\right) \mathrm{OR}=0.3(0)\left(\mathrm{mol} \mathrm{dm}^{-3}\right) \checkmark$ amount $\mathrm{NO}_{2}=0.30 \times 4=1.2(\mathrm{~mol}) \checkmark$	4	ANNOTATIONS MUST BE USED For all parts, ALLOW numerical answers from 2 significant figures up to the calculator value Ignore rounding errors after second significant figure 1st mark is for realising that concentrations need to be calculated. ALLOW ECF Correct numerical answer with no working would score all previous calculation marks Making point 2 subsumes point 1

		Denominator/bottom of K_{p} expression increases more (than numerator/top) \checkmark Equilibrium shift (K_{p} expression) Ratio (in K_{p} expression) increases to restore K_{p} OR Numerator/top of K_{p} expression increases to restore $K_{p} \vee$		ALLOW more NO_{2} / product formed to restore K_{p} ALLOW ratio adjusts to restore K_{p} Examiner's Comments Candidates almost universally secured the first mark for equilibrium shifting to the right. Many scored this by simple application of Le Chatelier's principle, and then went on to incorrectly explain K_{p} increased because of this shift. Very few realised that (a constant) K_{p} drives Le Chatelier's principle (and not the other way around). An increase of pressure will increase the value of the partial pressures in the bottom half of the K_{p} expression more than the top half, thus (initially) decreasing the K_{p} ratio. Therefore, to restore K_{p}, the amount of NO_{2} present must increase; consequently, the equilibrium shifts to the right.
		Total	10	
7	i	$\left(K_{\mathrm{c}}=\right) \frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]} \downarrow$ Units: $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~S}$	2	IGNORE state symbols in K_{c} expression, even if wrong. For units, ALLOW $\mathrm{mol}^{-1} \mathrm{dm}^{3}$ DO NOT ALLOW dm ${ }^{3} / \mathrm{mol}$ NOTE: If K_{c} upside down, units become mol dm^{-3} by ECF No other ECF allowed for units. Examiner's Comments The expression and the units were almost universally known by the candidates.
	ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.45, Award 4 marks. Equilibrium concentrations (moles x 2.5) $\mathrm{SO}_{2}=0.135\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ AND $\mathrm{O}_{2}=0.0675\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$	4	FULL ANNOTATIONS NEEDED IF there is an alternative answer, check to see if there is any ECF credit possible using working below \qquad ALLOW ECF from incorrect concentrations of SO_{2} and / or O_{2}

5.1.2 How Far

		$\left[\mathrm{SO}_{3}\right]=\sqrt{ }\left(\mathrm{K}_{\mathrm{c}} \times\left[\mathrm{SO}_{2}\right]^{2} \times \mathrm{O}_{2}\right)$ OR $\sqrt{ }\left(\left(3.045 \times 10^{4}\right) \times 0.135^{2} \times 0.0675\right) \checkmark$ $=6.12039291\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$ Answer scores both [SO_{3}] marks automatically $n\left(\mathrm{SO}_{3}\right)=6.12039291 / 2.5=2.45(\mathrm{~mol}) \checkmark$ 3SF required (Appropriate number)		ALLOW ECF from incorrect [SO_{3}] ALLOW 3 SF, 6.12, up to calculator value of 6.12039291 correctly rounded. Common errors 37.5 1 mark No $\sqrt{ }$ for $\left[\mathrm{SO}_{3}\right]^{2}$ and no scaling by $1 / 2.5$ 15.0 No $\sqrt{ }$ for $\left[\mathrm{SO}_{3}\right]^{2}$ 0.619 Use of mol of SO_{2} and O_{2} 1.55 2 marks No conc used and Use of mol of SO_{2} and O_{2} Examiner's Comments There were three steps to this calculation: - Conversion of molar quantities of SO_{2} and O_{2} to molar concentrations. - Insertion into the K_{c} expression and determining of the molar concentration of SO_{3}. - Conversion of the molar concentration of SO_{3} to a molar quantity including an appropriate number of significant figures. Steps 1 and / or 3 of the calculation were occasionally omitted but as long as the calculation was presented in a coherent manner, partial credit was awarded.
		Total	6	
8	i	(Species have) different states / phases \checkmark	1	Examiner's Comments All but a few candidates realised that the term heterogeneous equilibrium could be applied because carbon monoxide was in a different physical state to the other reactants and products.
	ii	$\left(K_{p}=\right) p(\mathrm{CO}(\mathrm{g}))^{4} \checkmark$	1	Allow species without state symbols and without brackets, e.g. $\mathrm{Pco}^{4}, \mathrm{ppCO}^{4}, \mathrm{PCO}^{4}, \mathrm{p}\left(\mathrm{CO}^{4}\right)$ etc.

		$\left.\times \Delta_{f} H(\mathrm{CO})\right) \checkmark$ Correct subtraction using ΔH and $\Delta_{f} H\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ $\begin{aligned} & \quad 4 \times \Delta_{f} H(\mathrm{CO})=(4 \times-393.5)-(-1118.5) \\ & +13.5 \\ & =-442(.0)\left(\mathrm{kJ} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$ Calculation of $\Delta_{f} H(C O)$ formation $\Delta_{f} H(\mathrm{CO})=-\frac{442}{4}=-110.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		NOTE: IF any values are omitted, DO NOT AWARD any marks. e.g. -393.5 OR -13.5 may be missing Common errors Any other number: CHECK for ECF from 1st marking point for expressions using ALL values with ONE error only e.g. one transcription error:, e.g. 395.3 for 393.5 Examiner's Comments The general method of determining $\Delta_{f} H(C O)$ was known to most candidates, but many examples of avoidable errors were seen. For example, transcription errors in recording $\Delta_{f} H$ values (-393 for -393.5 and -118.5 for -1118.5). Candidates should be advised to show every step in their calculation. This would allow method marks to be applied in the absence of a correct final answer.
		Total	8	
9	i	 ALLOW skeletal OR displayed formula OR mixture of the above as long as non-ambiguous, e.g.	1	ALLOW Structure must include OH as part of COOOH group ALLOW $-\mathrm{O}^{-} \mathrm{H}^{+}$in structure

5.1.2 How Far

5.1.2 How Far

5.1.2 How Far

				calculations of equilibrium constants. The correct numerical answer of 104 and units of $\mathrm{dm}^{3} \mathrm{~mol}^{-1}$ were seen often. The commonest calculation error was use of the equilibrium moles, rather than concentrations, giving 521. This question asked for the final value to be expressed to the most appropriate number of significant figures. Candidates should use the least significant number of significant figures in the provided data, in this case 3. Many candidates lost a mark by using more than 3 significant figures (e.g. 104.2 and 104.21). Answer: $K_{\mathrm{c}}=104 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$
	b	Ag^{+}/ silver nitrate reacts with I^{-}to form $\mathrm{Agl} /$ silver iodide OR $\mathrm{Ag}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{Agl} \checkmark$ yellow precipitate / solid forms \checkmark Equilibrium 2 shifts to the left \checkmark Equilibrium 1 shifts to left AND I_{2} comes out of solution / less I_{2} dissolves / I_{2} precipitates / black solid / grey solid / violet solid \checkmark	4	FULL ANNOTATIONS MUST BE USED DO NOT ALLOW cream OR cream73-yellow ALLOW just 'yellow' if supported by $\mathrm{Agl}(\mathrm{s})$ somewhere Examiner's Comments This question was about equilibrium, set in the context of the solubility of iodine. This part required candidates to apply their knowledge and understanding of equilibria to a novel situation. Candidates were expected to predict that $\mathrm{Ag}^{+}(\mathrm{aq})$ and $\mathrm{I}^{-}(\mathrm{aq})$ ions would react together to form $\mathrm{AgI}(\mathrm{s})$, a yellow precipitate, shifting equilibrium 2 to the left. Equilibrium 1 would then shift to the left forming solid iodine. Responses in terms of equilibrium 2 were seen far more often than for Equilibrium 1.
		Total	8	
		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=57.6 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$, award 6 marks IF answer $=57.6$ with incorrect units, award 5 mark Equilibrium amounts in mol $\begin{array}{ll} n\left(\mathrm{SO}_{2}\right)=0.180(\mathrm{~mol}) & \text { ALL } 3 \text { correct: } \checkmark \checkmark \\ n\left(\mathrm{O}_{2}\right)=0.090(\mathrm{~mol}) & \text { ANY } 2 \text { correct: } \checkmark \\ n\left(\mathrm{SO}_{3}\right)=0.820(\mathrm{~mol}) & \end{array}$ Equilibrium concentrations (moles $\times 4$) 1 MARK $\begin{aligned} & \mathrm{SO}_{2}=0.720\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & \text { AND O}=0.360\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & \text { AND SO } \end{aligned}$	6	FULL ANNOTATIONS NEEDED IF there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW ECF from incorrect moles of $\mathrm{SO}_{2}, \mathrm{O}_{2}$ AND SO_{2} ALL three concentrations required for this mark ALLOW ECF from incorrect concentrations NO ECF for numerical value with a square

			responded with an increase or even the same pressure. This question discriminated extremely well.
	iii ΔH is negative / '-' / -ve AND yield of SO_{3} decreases \checkmark	1	IGNORE exothermic and endothermic Examiner's Comments Candidates had far more success with this part, with the vast majority responding with a negative ΔH value and decreased yield of SO^{3}. Weaker candidates often used exothermic (or even endothermic) instead and obtained the incorrect effect.
	IGNORE le Chatelier responses Each marking point is independent K_{c} K_{c} does not change (with pressure / concentration) \checkmark Comparison of conc terms with more $\mathrm{O}_{2}\left[\mathrm{O}_{2}\right]$ / concentration of oxygen is greater OR denominator / bottom of K_{c} expression is greater \checkmark QWC: yield of SO_{3} linked to K_{c} (Yield of) SO_{3} is greater / increases AND		FULL ANNOTATIONS NEEDED ALLOW K_{c} only changes with temperature IF $1^{\text {st }}$ marking point has been awarded, IGNORE comments about ' K_{c} decreasing' or ' K_{c} increasing' and assume that this refers to how the ratio subsequently changes. i.e DO NOT CON $1^{\text {st }}$ marking point. IGNORE O_{2} is greater / increases ALLOW (Yield of) SO_{3} is greater / increases AND
	numerator / top of K_{c} expression is greater / increases \checkmark	3	to reach / restore K_{c} value \checkmark Examiner's Comments Explaining shifts in equilibrium in terms of K_{c} is far more difficult that the simpler le Chatelier approach. The examiners were impressed by the responses from able candidates with some excellent explanations comparing the values of the denominator and numerator between the two experiments and the consequential effect on the concentration of SO^{3}. Many responses did state that K_{c} is unaffected by changes in concentration or pressure but the explanation then used le Chatelier's principle. This part discriminated extremely well and unfortunately weaker candidates often failed to score.
	Total	11	

5.1.2 How Far

$\left\|\begin{array}{l} 1 \\ 2 \end{array}\right\|$			1	Square brackets are essential State symbols not required. IGNORE incorrect state symbols Examiner's Comments The K_{c} expression was shown correctly by almost all candidates, the only mistakes being the very occasional inverted expression or use of " + ' within the denominator.
b	i	$\begin{aligned} & \text { amount of } \mathrm{H}_{2}=3 \times 0.168 \\ & =0.504(\mathrm{~mol}) \checkmark \end{aligned}$	1	Examiner's Comments The correct answer of 0.504 mol was seen in the majority of scripts but examiners were also presented with many other responses. The key was use of the 1:3 molar ratio of $\mathrm{C}_{2} \mathrm{H}_{2}$ and H_{2} formed in the equilibrium mixture, with simple multiplication of 0.168 by 3 giving the correct answer. The commonest incorrect answer was 0.1404 from $3 / 2 \times 9.36 \times 10^{-2}$: from use the molar ratio of moles CH_{4} formed and H_{2} formed. Answer: 0.504 mol
	ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=0.153 \mathrm{~mol}^{2} \mathrm{dm}^{-6}$, award 3 marks IF answer $=0.153$ with incorrect units, award 2 marks IF answer from 3 (b)(i) for $\boldsymbol{n}\left(\mathrm{H}_{2}\right) \neq 0.504$, mark by ECF. Equilibrium concentrations (from $n\left(\mathrm{H}_{2}\right)=0.504 \mathrm{~mol} \mathrm{dm}^{-3}$) $\left[\mathrm{CH}_{4}\right]=2.34 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ AND $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=4.20 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ AND $\left[\mathrm{H}_{2}\right]=0.126\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$ $\begin{aligned} & \text { Calculation of } K_{\mathrm{c}} \text { and units } \\ & K_{\mathrm{c}}=\frac{4.20 \times 10^{-2} \times(0.126)^{3}}{\left(2.34 \times 10^{-2}\right)^{2}}=0.153 \checkmark \mathrm{~mol}^{2} \\ & \mathrm{dm}^{-6} \checkmark \\ & 3 \text { significant figures are required } \end{aligned}$	3	FULL ANNOTATIONS MUST BE USED \qquad IF there is an alternative answer, check to see if there is any ECF credit possible using working below \qquad ALLOW \div by 4 of equilibrium amounts in all expressions, i.e. ALLOW $\left[\mathrm{CH}_{4}\right]=\frac{9.168}{4} \mathrm{~mol} \mathrm{dm}^{-3}$ AND $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=\frac{4}{0.504} \mathrm{~mol} \mathrm{dm}^{-3}$ AND $\left[\mathrm{H}_{2}\right]=\frac{4}{4} \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ ALLOW ECF from incorrect concentrations or from moles From moles: $9.36 \times 10^{-2}, 0.168$ and $0.504, K_{c}=$ 2.45 by ECF ALLOW dm ${ }^{-6} \mathrm{~mol}^{2}$ DO NOT ALLOW $\mathrm{mol}^{2} / \mathrm{dm}^{6}$ ALLOW ECF from incorrect K_{c} expression for both calculation and units COMMON ECF From 3(b)(i) answer of 0.1404, $K_{\mathrm{c}}=3.32 \times 10^{-3}$

							$K_{c}=0.0531$ No $\div 4$ throughout 1 mark + units Examiner's Comments Many candidates are well-rehearsed for this type of question. Candidates were expected to use the equilibrium amounts, convert to concentrations by dividing by 4 and to use these values to obtain the K_{c} value. A common mistake was omission of the concentration stage, leading to a value of 2.45 . More calculator errors were seen than in the past, perhaps caused by the cubed power within the numerator. Candidates without a cubed function key on the calculator can simply multiply a value with itself three times. Few candidates failed to express their numerical value for K_{c} to three significant figures. The units caused few problems although some inverted units were seen. Answer: $0.153 \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
	iii	Initial amoun amount of CH $=0.4296$ OR	$\begin{aligned} & t \text { of } \mathrm{CH}_{4} \\ & 4=9.36 \\ & 0.43(0)(r \end{aligned}$	$0^{-2}+2 \times 0.168$		1	NO ECF possible (all data given in question) Examiner's Comments Although this part was more challenging than the initial molar ratio in (b)(i), many candidates were able to work out the amount of CH_{4} that had reacted as $2 \times 9.36 \times 10^{-2}$ and to then add this to the remaining amount of CH_{4} : $9.36 \times$ 10^{-2}. This part did cause a lot of difficult for weaker candidates with a range of incorrect numerical answers being seen. Answer: 0.4296 mol
	c	Change temperature increased smaller container catalyst added	K_{c} greater same same	Equilibrium amount of $\mathrm{C}_{2} \mathrm{H}_{2} /$ mol greater smaller same \checkmark	Initial rate greater greater greater	3	Mark by COLUMN ALLOW obvious alternatives for greater / smaller / same, e.g. increases / decreases; more / less Examiner's Comments This part tested candidates understanding of how three quantities would change from changes to experimental conditions. This was marked by column. Of the three quantities, K_{c} and rate were correct more often than the equilibrium amount of $\mathrm{C}_{2} \mathrm{H}_{2}$. This question discriminated extremely well. Strangely, some candidates chose to use their own words instead of those provided and

					examiners often saw words such as 'increases' and 'decreases'. As the meaning was clear, such responses were still credited.
			Total	9	
	a		FIRST CHECK THE ANSWER ON ANSWER LINE IF answer $=0.812 \mathrm{dm}^{6} \mathrm{~mol}^{-2}$, award 6 marks IF answer $=0.812$ with incorrect units, award 5 marks Equilibrium amounts in mol $\begin{aligned} & n\left(\mathrm{~N}_{2}\right)=0.62(0) \\ & n\left(\mathrm{~N}_{2}\right)=1.86 \end{aligned}$ Equilibrium concentrations in $\mathrm{mol} \mathrm{dm}^{-3}(\mathrm{~mol} \div$ 5) 1 MARK $\begin{aligned} & \mathrm{N}_{2}= \\ & 0.124 \\ & \text { AND } \\ & \mathrm{H}_{2}= \\ & 0.372 \\ & \text { AND } \\ & \mathrm{NH}_{3}= \\ & 0.072 \end{aligned}$ Calculation of K_{c} and units $\begin{aligned} & K_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}(\mathrm{~g})\right]^{2}}{\left[\mathrm{~N}_{2}(\mathrm{~g})\right] \times\left[\mathrm{H}_{2}(\mathrm{~g})\right]^{3}} \text { OR } \frac{0.072^{2}}{0.124 \times 0.372^{3}} \\ & =0.812 \mathrm{dm}^{6} \mathrm{~mol}^{-2} \end{aligned}$ At least 3SF is required	6	FULL ANNOTATIONS NEEDED IF there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW ECF from incorrect moles of $\mathrm{N}_{2}, \mathrm{H}_{2}$ AND / OR NH3 ALL three concentrations required for mark ALLOW ECF from incorrect concentrations OR use of moles (omitting conc stage) NO ECF for numerical value with a square AND / OR cube missing For K_{c}, ALLOW 3 significant figures up to calculator value of 0.8121093077 correctly rounded For units, ALLOW $\mathrm{mol}^{-2} \mathrm{dm}^{6}$ DO NOT ALLOW $\mathrm{dm}^{6} / \mathrm{mol}^{-2}$ COMMON ERRORS $0.0325 \quad 3$ marks + units mark from $\mathrm{N}_{2}=0.620, \mathrm{H}_{2}=1.86, \mathrm{NH}_{3}=0.360(\mathrm{~mol})$
	b	i	IGNORE le Chatelier responses \qquad Each marking point is independent $\boldsymbol{K}_{\mathrm{c}}$ K_{c} does not change (with pressure / concentration) Comparison of conc terms with more N_{2} [N_{2}] increases	3	FULL ANNOTATIONS NEEDED ALLOW K_{c} only changes with temperature IF 1st marking point has been awarded, IGNORE comments about ' K_{c} decreasing' or ' K_{c}

		OR denominator / bottom of K_{c} expression increases yield of NH_{3} linked to K_{c} Chemist is correct AND denominator decreases OR numerator increases to restore equilibrium K_{c}		increasing' and assume that this refers to how the ratio subsequently changes. i.e. DO NOT CON 1st marking point.
	ii	N_{2} obtained from the air AND H_{2} must be manufactured / does not occur naturally	1	N_{2} is more readily available not insufficient. ALLOW an example of H_{2} manufacture, e.g. from oil / gas / water BOTH responses required for mark.
		Total	10	
1	a	The forward reaction is exothermic, so an increase in temperature favours the backward reaction (owtte) therefore there will be more N_{2} and H_{2} OR less NH_{3} in the equilibrium mixture, AND therefore the value of the equilibrium constant will decrease (owtte) (1)	2	allow names of compounds allow reactants / product instead of compounds 2nd mark only available if deduced from 1st mark allow ecf for 2nd mark
	b	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer $=2.37 \times 10^{-6} \mathrm{kPa}^{-2}$ award 5 marks IF answer $=2.37 \times 10^{-6}$ with incorrect units award 4 marks At equilibrium, $\begin{aligned} n\left(\mathrm{H}_{2}\right)= & 0.300(\mathrm{~mol}) \text { AND } \\ n\left(\mathrm{NH}_{3}\right) & =0.100(\mathrm{~mol})(1) \\ & \frac{\mathbf{0 . 4 0 0}}{} \\ p\left(\mathrm{~N}_{2}\right)= & \mathbf{0 . 8 0 0} \times 500=250 \mathrm{kPa} \text { AND } \end{aligned}$ $=\frac{0.300}{0.800} \times 500=187.5 \mathrm{kPa} \text { AND }$ $p\left(\mathrm{NH}_{3}\right)=\frac{0.100}{0.800} \times 500=62.5 \mathrm{kPa}(1)$ $K_{\mathrm{p}}=\frac{p\left(\mathrm{NH}_{3}\right)^{2}}{p\left(\mathrm{~N}_{2}\right) \times p\left(\mathrm{H}_{2}\right)^{3}}=\frac{62.5^{2}}{250 \times 187}$ (1) $=2.37 \times 10^{-6}(1) \mathrm{kPa}^{-2}(1)$	5	Final answer must be correct and have the correct units to score all five marks allow calculator value for K_{p} correctly rounded to three or more significant figures. If there is an alternative answer, check to see if there is any ECF credit possible using working below
		Total	7	

