Mark scheme – How Far

Qı	Questio n		Answer/Indicative content	Mark s	Guidance
1	1		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 7.4 award 4 marks Initial moles of reactants 1 mark $n(CH_3OH)_{initial} = \frac{9.6}{32} = 0.3 \pmod{10}$ AND $n(CH_3COOH)_{initial} = \frac{12}{60} = 0.2 \pmod{10}$ Equilibrium moles 2 marks $n(CH_3COOH)$ reacted = 0.2 - 0.03 = 0.17 (mol) AND $n(CH_3OH)_{equil} = 0.3 - 0.17 = 0.13 \pmod{10}$ $n(CH_3OOH)_{equil} = 0.17 \pmod{10}$ $n(CH_3COOCH_3)_{equil} = 0.17 \pmod{10}$ K_c calculation 1 marks $K_c = \frac{0.17/V \times 0.17/V}{0.13/V \times 0.03/V} = 7.4 \checkmark$	4 (AO 1.2×1) (AO 2.8×3)	ALLOW minimum of 2SF throughout ALLOW ECF from initial moles ALLOW ECF from equilibrium moles Use of V not required but Kc expression must be correct ALLOW up to calculator answer of 7.41025641 <u>Examiner's Comments</u> This question asked the candidate to calculate K_c . Higher-attaining students tended to gain full marks. Some candidates made full use of tables (e.g. RICE: Reaction, Initial concentration, Change in concentration, Equilibrium concentration) which allowed for credit to be given through error carried forward. Some candidates did not use 0.03 as the change, and lower-attaining candidates did not use water in the K_c expression. Candidates should remember to provide written indications of what it is they are working out – presenting the calculations without any annotations can make it harder for error carried forward marks to be given if there is an error in their calculation
			Total	4	
			FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2.22 × 10 ⁴ award first 2 marks	3	ALLOW ECF for transcription errors in first sum
2			In $K_p = -\Delta G/RT = \frac{2.48 \times 10^4}{8.314 \times 298} = 10.01 \checkmark$ $K_p = 2.22 \times 10^4$ (3SF required) \checkmark	(AO 3.1×2)	ALLOW 10 up to calculator value of 10.00979992 ALLOW 22200 ALLOW 2.20 × 10 ⁴ OR 22000 (use of 10)
			Units = atm ⁻² √	(AO	ALLOW alternatives (k)Pa ⁻² OR N ⁻² m ⁴ OR mmHg ⁻² OR PSI ⁻² OR bar ⁻²

·	r r		1	Ι
			1.2×1	Common errors for 1 mark:
)	4.50×10^{-5} (use of -10.01)
				Examiner's Comments
				This was an unfamiliar expression linking ΔG and K_p . Many candidates correctly calculated this number. Some candidates calculated In K_p as 10.0 but then put a – in front for the e calculation. The question required the answer to 3 significant figures. Higher-attaining candidates were able to work out the units as any pressure unit ⁻² .
		Total	3	
3	а	$\begin{array}{ c c c c c c c c }\hline\hline T/K & 500 & 600 & 700 & 800 \\\hline\hline K_p & 5.86 \times 10^{45}$ & 1.83 \times 10^{37}$ & 1.46 \times 10^{31}$ & 1.14 \times 10^{26} \\\hline\hline $\frac{1}{T}$ & 2.00 \times 10^{-3}$ & 1.67 \times 10^{-3}$ & 1.43 \times 10^{-3}$ & 1.25 \times 10^{-3} \\\hline\hline K_p & 105 & 86 & 72 & 60 \\\hline\hline $Calculator values$ \\ $1/T/10^{-3}$ & 2.00 $ & 1.66 \\ $recurring$ & 1.428571429 & 1.25 \\\hline $ln K_p & 105.3844788 & 85.799996441 & 71.75857432 & 59.99824068 \\\hline\end{array}$	2 (AO 1.2×2)	Mark by row ALLOW 2 SF or more for 1/T but ignore trailing zeroes ALLOW whole numbers (±1) for In Kp ALLOW 1 small slip in each row. e.g. 1.66 for 1.67; 71.7 for 71.8 Check with calculator values below table BUT DO NOT ALLOW whole number errors, e.g. 85 for 86 <u>Examiner's Comments</u> Candidates were expected to complete values for 1/T and In K_p from supplied T and K_p values.
				Candidates were supplied with an example and this enabled most candidates to obtain both available marks.
	b	Equilibrium (position) shifts to the left AND (forward) reaction is exothermic √	1 (AO 2.2)	 ALLOW 'favours reverse reaction' Implies shift to left ALLOW 'shifts in endothermic direction' BUT only if (forward) reaction stated as exothermic Examiner's Comments Most candidates were aware that a decrease in <i>K</i>_p with increasing temperature signals that the forward reaction is exothermic. The question also asked for the effect on the equilibrium position. A significant number of candidates omitted this part of the question. Candidates are advised to check back to all the requirements in a question.

				Mathematically able candidates used the $y = mx$ + <i>c</i> equation for a straight line with the supplied mathematical relationship (Equation 5.1) to identify the <i>y</i> intercept as $\Delta S/R$. They then stated that ΔS could be determined by multiplying the value of the <i>y</i> intercept by <i>R</i> . Many candidates found the mathematical requirements of the above parts difficult. Responses for this part were often in terms of the gradient instead of 'intercept'.
		Total	9	
4		p(O ₂) = 0.21 × 1.00 × 10 ⁵ = 21,000 / 2.1 × 10 ⁴ (Pa)√	1 AO 2.2	Examiner's Comments This question tested an understanding of 'partial pressure' as a concept. Most candidates obtained the correct response of 21,000 Pa or 2.1×10^4 Pa. Scaling proved to be a common error with 2.1×10^{-4} Pa being seen, presumably from dividing, instead of multiplying, 0.21 by 1×10^4 .In calculations, candidates are advised to think about whether their answer is sensible, rather than relying just on the answer displayed on the calculator.
		Total	1	
5	i	Titration √	1	IGNORE type of titration Examiner's Comments Candidates found this part difficult and only higher ability candidates identified that a titration could easily determine the concentration of succinic acid. The answers seen covered most of the techniques encountered in the course. Candidates should consider the information provided in a practical context to arrive at an informed response rather than what sometimes seemed to be a guess.
	ii	$(CH_2COOH)_2 + 2C_2H_5OH \Rightarrow$ $(CH_2COOC_2H_5)_2 + 2H_2O \checkmark$	1	ALLOW → instead of \rightleftharpoons sign ALLOW molecular formulae or hybrid formulae Structures provided on e.g. C ₄ H ₆ O ₄ + 2C ₂ H ₆ O \rightleftharpoons C ₈ H ₁₄ O ₄ + 2H ₂ O

					from which the supplied K expression had been
					written.
					Overall, this part was answered well but some candidates struggled with the brackets or used CH ₂ COOH ₂ for succinic acid.
					IGNORE displayed formulae
					Examiner's Comments
	iii			1	This part discriminated extremely well with many candidates finding it difficult to convert the bracketed structural formula into a skeletal formula. Common errors were drawing of the mono-ester or omitting a carbon atom in the centre of the structure.
					Even when incorrect, most attempted answers were skeletal formulae.
					ALLOW units cancel
					ALLOW (sum of) balancing numbers/coefficients on each side of equation are the same OR same number of (moles of) reactants and products
		Volume cancels OR Same number of moles on each side of equation √		Examiner's Comments	
	i v			1	Many candidates did not seem to realise that the supplied equation used moles, not concentrations. Those who did often stated that the mole representation could be used because the volume was the same for all. Of those who went on to state that the volume would cancel, only a few explained why that was true in this particular case.
					This challenging part discriminated very well. The best responses showed the units as n/V in the expression and showed that the volumes cancel.
		Moles of equilibrium products	1 mark		
	v	<i>n</i> ((CH ₂ COOC ₂ H ₅) ₂) = 0.0300 (mol) AND <i>n</i> (H ₂ O) = 0.0600 (mol) √		3	
		Moles of C₂H₅OH	1 mark		
		<i>n</i> (C ₂ H ₅ OH) = 0.150 − 0.060 = 0.0900 (mol) √	,		

			K _c calculated 1 mark		ALLOW ECF
			$= \frac{0.03 \times 0.06^2}{0.02 \times 0.09^2} = 0.667 \text{ OR } 0.67 \checkmark$		ALLOW 0.66, 0.666, etc. (2 SF and more) Treated as meaning 0.6 recurring
			NOTE : 0.02 must be used for <i>n</i> (succinic acid)		ALLOW 2/3 IGNORE any units
					Examiner's Comments
					Overall, this part discriminated well with many candidates obtaining the correct answer of 0.67. Common errors included a one significant figure answer of 0.6 or 0.7 and 0.375, by using 0.12 mol instead of 0.09 mol for the moles of ethanol.
					Many successful answers were well-presented and included a table of initial and final values. This gave a systematic way of deriving the equilibrium moles.
			Total	7	
			$\mathcal{K}_{c} = \frac{[NO_{2}]^{2}}{[NO]^{2} [O_{2}]} \checkmark$ Units = dm ³ mol ⁻¹ \checkmark		Must be square brackets IGNORE state symbols
6	а			2	ALLOW mol ⁻¹ dm ³ ALLOW mol dm ⁻³ as ECF from inverted K_c expression
					Examiner's Comments
					The expression and the units were almost universally known by the candidates.
			FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 1.2 (mol) award 4 marks		ANNOTATIONS MUST BE USED For all parts, ALLOW numerical answers from 2 significant figures up to the calculator value
			Unless otherwise stated, marks are for correctly calculate values. Working shows how values have been derived.	d	Ignore rounding errors after second significant figure
			$[NO] = \frac{0.40}{4.0} = 0.1(0) \text{ (mol dm}^{-3}\text{)}$		1st mark is for realising that concentrations need to be calculated.
	b		AND	4	ALLOW ECF
			$[O_2] = \frac{0.80}{4.0} = 0.2(0) \text{ (mol dm}^{-3}) \checkmark$		Correct numerical answer with no working would score all previous calculation marks
			$[NO_2]^2 = 45 \times 0.102 \times 0.20 \text{ OR} = 0.09(0) \checkmark$		
			$[NO_2] = \sqrt{45 \times 0.10^2 \times 0.20} \text{ OR} = 0.3(0) \pmod{\text{dm}^{-3}} \checkmark$		
			amount NO₂ = 0.30 × 4 = 1.2 (mol) √		Making point 2 subsumes point 1

-					
					Making point 3 subsumes points 2 and 1
					Common errors
					9.6 = 3 marks mol of NO and O ₂ used
					$0.36 = 3$ marks mol of NO ₂ calculated from $[NO_2]^2$
					2.4 = 2 marks mol of NO and O ₂ used and no
					mol of NO ₂ calculated
					Examiner's Comments
					There were three steps to this calculation:
					Conversion of molar quantities of NO and O ₂ to
					molar concentrations.
					Insertion into the K_c expression and
					determination (via a square root calculation) of the molar concentration of NO ₂ .
					Conversion of the molar concentration of NO ₂ to
					a molar quantity.
					Steps 1 and/or 3 of the calculation were
					occasionally omitted but if the calculation was presented in a coherent manner, even here.
					partial credit was awarded.
					ALLOW K _c for K _p
					ALLOW Equilibrium shifts to left hand side as
			Exothermic		temperature increases
	с	i	AND	1	Examiner's Comments
			$K_{\rm p}$ decreases as temperature increases $$		Most candidates knew the forward reaction was
					exothermic due to K_{ρ} decreasing as temperature increased.
					A common error was to write vegue responses
					such as ' K_p decreases with temperature'.
					FULL ANNOTATIONS NEEDED
			Equilibrium shift		
		ii	(Equilibrium position) shifts to right / forward / towards products \checkmark	3	
			Effect of increased pressure on K _p expression		ALLOW K (initially) degreeses for second
					marking point IF K_p is seen to be restored later
			Ratio (in Kp expression) decreases OR		in the process.
	1				

		Denominator/bottom of \mathcal{K}_{P} expression increases more (than numerator/top) \checkmark		
		Equilibrium shift (Kp expression)		ALLOW more NO ₂ / product formed to restore K_p ALLOW ratio adjusts to restore K_p
		Ratio (in <i>K</i> _p expression) increases to restore K _p OR Numerator/top of <i>K</i> _p expression increases to restore <i>K</i> _p √		Examiner's Comments
				Candidates almost universally secured the first mark for equilibrium shifting to the right. Many scored this by simple application of Le Chatelier's principle, and then went on to incorrectly explain K_{ρ} increased because of this shift.
				Very few realised that (a constant) K_p drives Le Chatelier's principle (and not the other way around). An increase of pressure will increase the value of the partial pressures in the bottom half of the K_p expression more than the top half, thus (initially) decreasing the K_p ratio. Therefore, to restore K_p , the amount of NO ₂ present must increase; consequently, the equilibrium shifts to the right.
		Total	10	
7	i	$(K_{c} =) \frac{[SO_{3}]^{2}}{[SO_{2}]^{2} [O_{2}]} \checkmark$ Units: dm ³ mol ⁻¹ S	2	IGNORE state symbols in K _c expression, even if wrong. For units, ALLOW mol ⁻¹ dm ³ DO NOT ALLOW dm ³ /mol NOTE: If K _c upside down, units become mol dm ⁻³ by ECF No other ECF allowed for units. Examiner's Comments The expression and the units were almost universally known by the candidates.
	ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.45, Award 4 marks. Equilibrium concentrations (moles x 2.5) 1 MARK SO ₂ = 0.135 (mol dm ⁻³)	4	FULL ANNOTATIONS NEEDED IF there is an alternative answer, check to see if there is any ECF credit possible using working below
		AND O₂ = 0.0675 (mol dm⁻³) √		ALLOW ECF from incorrect concentrations of SO ₂ and / or O ₂

		Calculation of [SO ₃ (g)] 2 MARKS $[SO_3] = \sqrt{(K_c \times [SO_2]^2 \times O_2)}$ OR $\sqrt{((3.045 \times 10^4) \times 0.135^2 \times 0.0675)}$		ALLOW ECF from incorrect [SO3]ALLOW 3 SF, 6.12, up to calculator value of 6.12039291 correctly rounded.Common errors37.51 mark No \sqrt{for} [SO3] ² and no scaling by 1/2.515.02 marksNo \sqrt{for} [SO 12
		Answer scores both [SO ₃] marks automatically		0.619 3 marks Use of mol of SO ₂ and O ₂ 2 marks
		Calculation of n(SO ₃) in 400 cm ³ 1 MARK n(SO ₃) = 6.12039291/2.5 = 2.45 (mol) √ 3SF required (Appropriate number)		 No conc used and Use of mol of SO₂ and O₂ Examiner's Comments There were three steps to this calculation: Conversion of molar quantities of SO₂ and O₂ to molar concentrations. Insertion into the K_c expression and determining of the molar concentration of SO₃. Conversion of the molar concentration of SO₃ to a molar quantity including an appropriate number of significant figures. Steps 1 and / or 3 of the calculation were occasionally omitted but as long as the calculation was presented in a coherent manner, partial credit was awarded.
		Total	6	
8	i	(Species have) different states / phases √	1	Examiner's Comments All but a few candidates realised that the term heterogeneous equilibrium could be applied because carbon monoxide was in a different physical state to the other reactants and products.
	ii	$(\mathcal{K}_{p} =) \rho(\mathrm{CO}(g))^{4} \checkmark$	1	Allow species without state symbols and without brackets, e.g. Pco^4 , $ppCO^4$, PCO^4 , $p(CO^4)$ etc.

			DO NOT ALLOW square brackets Examiner's Comments Marks were awarded for less than perfect versions of $K_p = p(CO(g))^4$. As long as a 'p' or a 'P' was seen and curved, rather than square, brackets, along with the correct power, the mark was awarded. This was to differentiate between the conditioned when leave that endudte particle
			pressures of gaseous species should feature in a K_p expression from the candidates who used all four species to write the expression.
			IGNORE units ALLOW (+) 467 up to calculator value of 466.8762 correctly rounded
	ΔG at 25 C $\Delta G = \Delta H - T\Delta S = 676.4 - (298 \times 0.7031)$ $= (+) 467 (kJ mol^{-1}) OR (+) 466876$ $(J mol^{-1}) \checkmark$		ECF for any positive value determined in M1
	Non-feasibility statement Non-feasible when $\Delta G > 0$ OR $\Delta G > 0$ OR $\Delta H > T\Delta S \checkmark$	3	ALLOW 962 up to calculator value of 962.0253165 correctly rounded
	Minimum temperature minimum temperature = $\frac{\Delta H}{\Delta S} = \frac{676.4}{0.7031}$ = 962(.0) K \checkmark		Examiner's Comments Candidates coped well with the calculation and, apart from a significant number of rounding errors, could provide a positive value of ΔG and therefore could show the reaction to not be feasible.
			Candidates were also able to calculate that the minimum temperature required for the reaction to be feasible was 962.023165 K which was sensibly rounded to 962 K. A significant number of candidates chose to give 963 K as the final answer despite showing a correct value to several decimal places in their working.
i v	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -110.5, Award 3 marks. Correct expression $-13.5 = (4 \times -393.5) - (-1118.5 + 4)$	3	For answer, ALLOW −111 (kJ mol ^{−1})

		× Δ _f H(CO)) √		NOTE: IF any valu	ies are omitted, DO s. e.g. −393.5 OR −	NOT 13.5 may
		Correct subtraction using ΔH and $\Delta_f H$ (Fe ₃ O ₄) $4 \times \Delta_f H$ (CO) = (4 × -393.5) - (-1118.5) + 13.5		be missing		
		= −442(.0) (kJ mol ⁻¹) √				
		Calculation of $\Delta_{\rm f} H(\rm CO)$ formation $\Delta_{\rm f} H(\rm CO) = -\frac{442}{4} = -110.5 ~(kJ ~mol^{-1}) \checkmark$				
				Common errors		
				(+)110.5	wrong / omitted sign	2 marks
				(+)184.625 / 184.63 / 184.6 / 185	No 4CO2	2 marks
				(+)738.5 / 739	No 4CO₂ and no CO/4	1 mark
				-117.25 / -117.3 / -117	Wrong cycle	2 marks
				-469	wrong cycle, no CO/4	1 mark
				(+)177.8757 177.88 / 177.9 / 178	Wrong cycle, no 4CO2	1 mark
				-360.5	Used 118.5	2 marks
				Any other number: marking point for e with ONE error onl e.g.395.3 for 393.5	CHECK for ECF fr expressions using A ly e.g. one transcrip	om 1st LL values tion error:,
				Examiner's Comr The general metho was known to mos examples of avoid example, transcrip values (-393 for -: -1118.5). Candida show every step in allow method mark absence of a corre	ments od of determining $\Delta_{\rm f}$ at candidates, but manually able errors were set tion errors in record 393.5 and -118.5 for thes should be advis to their calculation. These to be applied in the ect final answer.	H(CO) any en. For ing Δ _f H or ed to his would ne
		Total	8			
9	i	H ₃ C — C O — OH ✓ ALLOW skeletal OR displayed formula	1	ALLOW н ₃ с—о—сон	н ₃ с О R ОН	-0
		OR mixture of the above as long as non-ambiguous, e.g.		Structure must incl group	lude OH as part of (СОООН
		-		ALLOW –O⁻ H⁺ in	structure	

			Examiner's of This part was providing a s COOOH fund allow alternat atoms were b C atom, e.g.	Comment: s attempted well, with many tructure containing the correct ctional group. The mark scheme did tives provided that the three O bonded to the H ₃ C-O-COOH
			If there is an any ECF cre ALLOW ^{0.37}	alternative answer, check for dit $= \frac{[CH_3COOOH]}{0.500 \times 0.500}$
			0.5 × 0.5 hav Common er	re been used
	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 0.023(125) (mol) award 3 marks for calculation		0.076	2 marks Use of [CH ₃ COOOH] ²
	$K_{c} expression$ $(K_{c} =) \frac{[CH_{3}COOOH]}{[H_{2}O_{2}] [CH_{3}COOH]} \checkmark$		0.675	2 marks Use of 0.5 for [H ₂ O] on K_c
ii	[CH ₃ COOOH] = $0.37 \times 0.500 \times 0.500 = 0.0925$ (mol dm ⁻³) \checkmark Subsumes K _c expression	3	0.169	2 marks Inverted K₀
	<i>п</i> (СН₃СОООН)		0.338	1 mark
	= 0.0925 × ²⁵⁰ / ₁₀₀₀ = 0.023(125) (mol) ✓			Inverted K_c AND 0.5 for [H ₂ O]
			5.78 × 10 ⁻³	2 marks $\times \frac{250}{1000}$ before [CH ₃ COOOH]
			Examiner's of Many candid but water wa Candidates th concentration CH ₃ COOH, u	Comment: ates obtained the correct answer s often seen in the K_c expression. hen assigned arbitrary values to the n of the water, often the same as unity, or even 55.6 from 1000/18.

				The mark scheme allowed some credit by use of error carried forwards. Answer: 0.023 mol
	Total		4	
1 a	FIRST, CHECK THE ANSWER ON ANSWER LINE IF $K_c = 104 \text{ dm}^3 \text{ mol}^{-1}$ award 4 marks: 3 for calculation of 104 from data, 1 for units 	(1 mark) (3 marks)	4	FULL ANNOTATIONS MUST BE USEDThroughout, at least 3SF but ALLOW absence of trailing zeroes e.g. for 9.80×10^{-3} ALLOW 9.8×10^{-3} FOR I° 0.4702, ALLOW 0.47(0) (mol dm ⁻³) still $\rightarrow 104$ for calcState symbols not required in K_c expression ALLOW ECF from incorrect concentrationsAny ECF value MUST be to 3 SF for K_c value COMMON ERRORS 104.2 \rightarrow 104.2109741 (calc) > 3 SF 2 marks + units521 no × 5 for concs2 marks + units521.1 \rightarrow 521.0548703 as above and > 3SF 1 mark + units2610 ÷ 5 instead of × 5 for concs 2 marks + units9.60 × 10 ⁻³ K_c upside down, correct concs 2 marks + units1.92 × 10 ⁻³ K_c upside down, no × 5 for concs 1 mark + unitsNOTE: With K_c upside down, units become mol dm ⁻³ by ECFExaminer's CommentsThis question was about equilibrium, set in the context of the solubility of iodine.Most candidates are comfortable with

					calculations of equilibrium constants. The correct numerical answer of 104 and units of dm ³ mol ⁻¹ were seen often. The commonest calculation error was use of the equilibrium moles, rather than concentrations, giving 521. This question asked for the final value to be expressed to the most appropriate number of significant figures. Candidates should use the least significant number of significant figures in the provided data, in this case 3. Many candidates lost a mark by using more than 3 significant figures (e.g. 104.2 and 104.21). Answer: $K_c = 104 \text{ dm}^3 \text{ mol}^{-1}$
	b		Ag ⁺ / silver nitrate reacts with I [−] to form AgI / silver iodide OR Ag ⁺ + I [−] → AgI ✓ yellow precipitate / solid forms ✓ Equilibrium 2 shifts to the left ✓ Equilibrium 1 shifts to left AND I ₂ comes out of solution / less I ₂ dissolves / I ₂ precipitates / black solid / grey solid / violet solid ✓	4	 FULL ANNOTATIONS MUST BE USED DO NOT ALLOW cream OR cream73–yellow ALLOW just 'yellow' if supported by Agl(s) somewhere Examiner's Comments This question was about equilibrium, set in the context of the solubility of iodine. This part required candidates to apply their knowledge and understanding of equilibria to a novel situation. Candidates were expected to predict that Ag⁺(aq) and I⁻(aq) ions would react together to form Agl(s), a yellow precipitate, shifting equilibrium 2 to the left. Equilibrium 1 would then shift to the left forming solid iodine. Responses in terms of equilibrium 2 were seen far more often than for Equilibrium 1.
			Total	8	
1		i	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 57.6 dm³ mol ⁻¹ , award 6 marks IF answer = 57.6 with incorrect units, award 5 markEquilibrium amounts in mol2 MARKS $n(SO_2) = 0.180 \text{ (mol)}$ ALL 3 correct: $\checkmark \checkmark$ $n(O_2) = 0.090 \text{ (mol)}$ ANY 2 correct: \checkmark $n(SO_3) = 0.820 \text{ (mol)}$ ANY 2 correct: \checkmark Equilibrium concentrations (moles × 4)1 MARK $SO_2 = 0.720 \text{ (mol dm}^{-3})$ AND $O_2 = 0.360 \text{ (mol dm}^{-3})$	6	FULL ANNOTATIONS NEEDED IF there is an alternative answer, check to see if there is any ECF credit possible using working below
			AND SO ₃ = 3.28 (mol dm ^{-s}) ✓		NO ECF for numerical value with a square

		Calculation of K_c and units 3 MARKS		missing
		$K_{c} = \frac{[SO_{3}]^{2}}{[SO_{2}]^{2} [O_{2}]} \text{ OR } \frac{3.28^{2}}{(0.720)^{2} \times (0.360)} \checkmark$ = 57.6 \checkmark dm ³ mol ⁻¹ \checkmark		For <i>K_c</i> , ALLO calculator valu rounded
		At least 3SF is required		For units, ALL DO NOT ALLO
				ALLOW ECF the both calculation
				COMMON ER 0.0294 3 m from SO ₂ = 0.8 (mol)
				Examiner's C
				Many candidat type of questic determine the concentrations 0.250, and to u obtain the <i>K</i> _c va available for th calculation usin the units. As e caused the big Most correctly 0.820 mol for S reversed or ev was often inco 0.090), rather i seen. The maj calculate conc amounts. Som just divided by dividing. Throu consequentiall not repeatedly majority of can part.
				Answer: K _c = 5
				For fewer mole ALLOW more
				Examiner's C
	ii	(Pressure) decreases AND fewer molecules / moles ✓	1	Surprisingly th many candida expecting to se decreased pre gas molecules

N 3 significant figures up to e of 57.64746228 correctly

.OW mol⁻¹ dm³ **OW** dm³ / mol

from incorrect Kc expression for on and units

RORS

arks + units mark $820, O_2 = 0.410, SO_3 = 0.180$

omments

tes are now well-rehearsed for this on. Candidates were expected to equilibrium amounts, convert to by multiplying by 4 or dividing by use the concentration values to alue. Three easy marks were ne *K*c expression, a correct ng calculated concentrations, and expected the equilibrium amounts gest problems for candidates. obtained 0.180 mol for SO2 and SO₃ (although some had these ren the same). The amount of O₂ orrect with 0.410 mol (0.500 than 0.090 mol, being commonly ority used 1000/250 or ÷ 0.250 to entrations from their equilibrium e omitted this stage whilst other 250 or multiplied instead of ughout, the examiners marked ly so that an individual error was penalised. Consequently the ididates scored 4–6 marks for this

57.6 dm³ mol⁻¹

es. **ALLOW** 3 mol \rightarrow 2 mol moles of reactants

omments

is part presented problems to tes. The examiners were ee a response in terms of a essure from the presence of fewer B. However, many candidates

				responded with an increase or even the same pressure. This question discriminated extremely well.
		Δ <i>H</i> is negative / '–' / −ve AND yield of SO₃ decreases √	1	IGNORE exothermic and endothermic Examiner's Comments Candidates had far more success with this part, with the vast majority responding with a negative ΔH value and decreased yield of SO ³ . Weaker candidates often used exothermic (or even endothermic) instead and obtained the incorrect effect.
		IGNORE le Chatelier responses Each marking point is independent		FULL ANNOTATIONS NEEDED
		K_c K_c does not change (with pressure / concentration) √		ALLOW K_c only changes with temperature IF 1 st marking point has been awarded, IGNORE comments about ' K_c decreasing' or ' K_c increasing' and assume that this refers to how
	i V	Comparison of conc terms with more O ₂ [O ₂] / concentration of oxygen is greater OR denominator / bottom of K_c expression is greater \checkmark		the ratio subsequently changes. i.e DO NOT CON 1 st marking point.
		QWC: yield of SO₃ linked to K _c (Yield of) SO ₃ is greater / increases AND		ALLOW (Yield of) SO₃ is greater / increases AND
	i v	numerator / top of K_{\circ} expression is greater / increases \checkmark	3	to reach / restore K_c value \checkmark Examiner's Comments Explaining shifts in equilibrium in terms of K_c is far more difficult that the simpler le Chatelier approach. The examiners were impressed by the responses from able candidates with some excellent explanations comparing the values of the denominator and numerator between the two experiments and the consequential effect on the concentration of SO ³ . Many responses did state that K_c is unaffected by changes in concentration or pressure but the explanation then used le Chatelier's principle. This part discriminated extremely well and unfortunately weaker candidates often failed to score.
		Total	11	

1	а		$(K_{c} =) \frac{[C_{2}H_{2}][H_{2}]^{3}}{[CH_{4}]^{2}} \checkmark$	1	Square brackets are essential State symbols not required. IGNORE incorrect state symbols Examiner's Comments The <i>K</i> _c expression was shown correctly by almost all candidates, the only mistakes being the very occasional inverted expression or use of "+' within the denominator.
	b	i	amount of H₂ = 3 × 0.168 = 0.504 (mol) ✓	1	Examiner's Comments The correct answer of 0.504 mol was seen in the majority of scripts but examiners were also presented with many other responses. The key was use of the 1:3 molar ratio of C_2H_2 and H_2 formed in the equilibrium mixture, with simple multiplication of 0.168 by 3 giving the correct answer. The commonest incorrect answer was 0.1404 from $3/2 \times 9.36 \times 10^{-2}$: from use the molar ratio of moles CH ₄ formed and H ₂ formed. Answer: 0.504 mol
		ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 0.153 mol ² dm ⁻⁶ , award 3 marks IF answer = 0.153 with incorrect units, award 2 marks IF answer from 3(b)(i) for $n(H_2) \neq 0.504$, mark by ECF. Equilibrium concentrations (from $n(H_2) = 0.504$ mol dm ⁻³) [CH ₄] = 2.34 × 10 ⁻² (mol dm ⁻³) AND [C ₂ H ₂] = 4.20 × 10 ⁻² (mol dm ⁻³) AND [C ₂ H ₂] = 0.126 (mol dm ⁻³) \checkmark Calculation of K _c and units $\frac{4.20 \times 10^{-2} \times (0.126)^3}{(2.34 \times 10^{-2})^2} = 0.153 \checkmark mol^2$ dm ⁻⁶ \checkmark 3 significant figures are required	3	FULL ANNOTATIONS MUST BE USEDIF there is an alternative answer, check to see if there is anyECF credit possible using working belowALLOW \div by 4 of equilibrium amounts in all expressions, i.e.ALLOW $[CH_4] = \frac{9.36 \times 10^{-2}}{4}$ mol dm ⁻³ ALLOW $[CH_4] = \frac{9.36 \times 10^{-2}}{4}$ mol dm ⁻³ AND $[C_2H_2] = \frac{9.36 \times 10^{-2}}{4}$ mol dm ⁻³ AND $[C_2H_2] = \frac{9.36 \times 10^{-2}}{4}$ mol dm ⁻³ ALLOW ECF from incorrect concentrations or from molesFrom moles: 9.36×10^{-2} , 0.168 and 0.504 , $K_c =$ 2.45 by ECFALLOW dm ⁻⁶ mol ² DO NOT ALLOW mol ² /dm ⁶ ALLOW ECF from incorrect K_c expression for both calculation and unitsCOMMON ECFFrom 3(b)(i) answer of 0.1404 , $K_c = 3.32 \times 10^{-3}$ 2 marks + units

								$K_c = 0.0531$ No ÷ 4 throughout 1 mark + units
								Examiner's Comments
								Many candidates are well-rehearsed for this type of question. Candidates were expected to use the equilibrium amounts, convert to concentrations by dividing by 4 and to use these values to obtain the K_c value. A common mistake was omission of the concentration stage, leading to a value of 2.45. More calculator errors were seen than in the past, perhaps caused by the cubed power within the numerator. Candidates without a cubed function key on the calculator can simply multiply a value with itself three times. Few candidates failed to express their numerical value for K_c to three significant figures. The units caused few problems although some inverted units were seen.
								NO ECF possible (all data given in question)
								Examiner's Comments
	iii amount of CH ₄ amount of CH ₄ = $9.36 \times 10^{-2} + 2 \times 0.168$ = 0.4296 OR $0.43(0)$ (mol) \checkmark		1	Although this part was more challenging than the initial molar ratio in (b)(i), many candidates were able to work out the amount of CH ₄ that had reacted as $2 \times 9.36 \times 10^{-2}$ and to then add this to the remaining amount of CH ₄ : 9.36×10^{-2} . This part did cause a lot of difficult for weaker candidates with a range of incorrect numerical answers being seen.				
								Answer: 0.4296 mol
								Mark by COLUMN ALLOW obvious alternatives for greater / smaller / same, e.g. increases / decreases:
		Change	Kc	amount of C ₂ H ₂ / mol	Initial rate			more / less
		temperature increased	greater	greater	greater		2	Examiner's Comments
U		smaller container	same	smaller	greater		5	This part tested candidates understanding of
		added	same	same	greater			how three quantities would change from changes to experimental conditions. This was
			v	•	v]		marked by column. Of the three quantities, <i>K</i> _c and rate were correct more often than the equilibrium amount of C ₂ H ₂ . This question discriminated extremely well. Strangely, some candidates chose to use their own words instead of those provided and

```
5.1.2 How Far
```

		1		- T	
					examiners often saw words such as 'increases' and 'decreases'. As the meaning was clear, such responses were still credited.
			Total	9	
			FIRST CHECK THE ANSWER ON ANSWER LINEIF answer = $0.812 \text{ dm}^6 \text{ mol}^{-2}$, award 6 marksIF answer = 0.812 with incorrect units, award 5 marksEquilibrium amounts in mol2 MARKS $n(N_2) = 0.62(0)$ $n(N_2) = 1.86$		FULL ANNOTATIONS NEEDED IF there is an alternative answer, check to see if there is any ECF credit possible using working below
1	а		Equilibrium concentrations in mol dm ⁻³ (mol \div 1 MARK 5) N ₂ = 0.124 AND H ₂ = 0.372 AND NH ₃ = 0.072	6	ALLOW ECF from incorrect moles of N ₂ , H ₂ AND / OR NH ₃ ALL three concentrations required for mark ALLOW ECF from incorrect concentrations OR use of moles (omitting conc stage) NO ECF for numerical value with a square
			Calculation of K_c and units 3 MARKS $K_c = \frac{[NH_3(g)]^2}{[N_2(g)] \times [H_2(g)]^3}$ OR $\frac{0.072^2}{0.124 \times 0.372^3}$		AND / OR cube missing For K_c , ALLOW 3 significant figures up to calculator value of 0.8121093077 correctly rounded
			= 0.812 dm ⁶ mol ⁻² At least 3SF is required		For units, ALLOW $mol^{-2} dm^{6}$ DO NOT ALLOW dm^{6}/mol^{-2}
	b	i	IGNORE le Chatelier responses <i>Each marking point is independent</i> <i>K</i> _c <i>K</i> _c does not change (with pressure / concentration)	3	FULL ANNOTATIONS NEEDED ALLOW K _c only changes with temperature
			Comparison of conc terms with more N ₂ [N ₂] increases		IF 1st marking point has been awarded, IGNORE comments about ' K_c decreasing' or ' K_c

		OR denominator / bottom of K_c expression increases		increasing' and assume that this refers to how the ratio subsequently changes. i.e. DO NOT CON 1st marking point.
		<i>yield of NH₃ linked to K_c</i> Chemist is correct AND denominator decreases OR numerator increases to restore equilibrium <i>K</i> _c		
	ii	N₂ obtained from the air AND H₂ must be manufactured / does not occur naturally	1	N ₂ is more readily available not insufficient. ALLOW an example of H ₂ manufacture, e.g. from oil / gas / water BOTH responses required for mark.
		Total	10	
1 4 ^a		The forward reaction is exothermic, so an increase in temperature favours the backward reaction <i>(owtte)</i> (1) therefore there will be more N ₂ and H ₂ OR less NH ₃ in the equilibrium mixture, AND therefore the value of the equilibrium constant will decrease <i>(owtte)</i> (1)	2	allow names of compounds allow reactants / product instead of compounds 2nd mark only available if deduced from 1st mark allow ecf for 2nd mark
b		FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 2.37×10^{-6} kPa ⁻² award 5 marks IF answer = 2.37×10^{-6} with incorrect units award 4 marks At equilibrium, $n(H_2) = 0.300 \text{ (mol) AND}$ $n(NH_3) = 0.100 \text{ (mol) (1)}$ 0.400 $p(N_2) = 0.800 \times 500 = 250 \text{ kPa AND}$ $p(N_2) = 0.800 \times 500 = 187.5 \text{ kPa AND}$ $p(H_2) = 0.800 \times 500 = 62.5 \text{ kPa (1)}$ $p(NH_3) = 0.800 \times 500 = 62.5 \text{ kPa (1)}$ $K_p = \frac{p(NH_3)^2}{p(N_2) \times p(H_2)^3} = \frac{62.5^2}{250 \times 187.5}$ (1) $= 2.37 \times 10^{-6}$ (1) kPa ⁻² (1)	5	Final answer must be correct and have the correct units to score all five marks allow calculator value for K_p correctly rounded to three or more significant figures. If there is an alternative answer, check to see if there is any ECF credit possible using working below
		Total	7	